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Discovery of Charmonium

November 1971

p on Be target at Brookhaven ete- annihilation at SLAC
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Discovery of Bottomonium

August 1977

p on Be target at Fermilab

W,

/ /

pEN i= Yl




e'e” annihilation into J/y

* ¢ ¢ created by virtual photon
* rate determined by one constant f
= g T
J/Plertel0) = fy €
e estimate using potential models: fy o R(0)

* can be calculated using lattice OCD
NROCE HBPOGEE
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Production of Charmonium
using Hadrons

e How is the c ¢ pair created?
What are the relevant parton processes?
Can they be calculated using perturbative QCD?

e How does the c ¢ pair bind to form charmonium?
Can effects of binding be reduced to a few constants?
Can they be calculated using lattice OCD?

e Possible answers: Color-singlet model (1976?)

Color evaporation model (1977)
NRQCD factorization (1995)
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Color-singlet Model

Ellis, Einhorn, Quigg 1976; Carlson and Suaya 1976; Kuhn 1980; Degrand, Toussaint 1980;
Kuhn, Nussinov, Ruckl 1980; Wise 1980; Chang 1980; Baier, Ruckl 1981; Berger, Jones 1981

® ¢ ¢ is created by parton collisions
with negligible relative momentum

e c ¢ can bind into charmonium only if it is created
in same color/angular momentum as in charmonium
135, for J/
1°Py for yg

e probability that ¢ ¢ binds into charmonium
is determined by wavefunction near origin
< R(0) for [/y, n.
o« R’(0) for y he
one constant for each multiplet
can be determined from annihilation decays:

Jly — et e
S e S
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Color Evaporation Model

Britzschnl 977 s Blalzent o977

® C ¢ pair is created by parton collisions
with invariant mass below D D threshold
(between 2m. and 2mp)

® c ¢ pair can bind into charmonium regardless
of its color/angular momentum state

e probability that c ¢ binds to form charmonium H
is universal constant fi for each multiplet
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Color-singlet Model vs
Color Evaporation Model

e Applicability
CSM: exclusive and inclusive production
definite predictions for polarization
CEM: only suftficiently inclusive production
no polarization

* Predictive power
CSM: one constant for each multiplet
determined by annihilation decays
CEM: one constant for each multiplet
adjustable parameters
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Color-singlet Model vs
Color Evaporation Model

® consistency
CSM: infrared divergences for P-waves
CEM: no infrared divergences

P dd iU
b %XC]-I—S-I-g

» perturbative corrections
CSM: separate NLO calculation for each process
CEM: can use NLO calculation for inclusive QO
Nason, Dawson, Ellis 1988

e Dominant theoretical prejudice in early 1990’s
CSM: can probably be extended
to a theory based on QCD
CEM: purely phenomenological model
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Color-singlet Model vs
Color Evaporation Model

Experimental status in early 1990’s

e Fixed target experiments (pN, N, YN)
feeddown to J/y from y(2S), . decays
contributions from small pr = nonperturbative?

large experimental errors
roughly compatible with CSM or CEM

e p p collisions at the Tevatron
feeddown to J/y from y(2S), 5 decays
feeddown from B decays
pr>5GeV = perturbative?
production rates much larger than predicted by CSM?
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Demise of Color-singlet Model
CDF collaboration 1997
e use vertex detector to remove B feeddown

o R A LT e e T
MRSDO structure functions

— Prompt J/9 production i

¢¢ ---- Prompt ¥(2S) production 7

o
"

do /dP; x B [nb/(GeV/c)]

E o Prompt J/y  J/v¢ Systematic Error 3
- A Prompt %(2S) S Z S Sys e matichBigls

1 ] 1 ] 1 ] 1 ] 1 ] ~|~~*~| 1 ] 1 ] 1 ] 1
i 4 12 14 16 18 20

® prompt ]/1/) Complicated by 1/}(2 S) el feeddownPTM [GeV/c]
e prompt 1(25): 30 times larger than CSM prediction

(in retrospect, compatible with CEM)
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Nonrelativistic QCD

Caswell and Lepage 1986

e effective field theory for Q_Q sector of QCD
at energies << mq from QQ threshold

* in quarkonium, small velocity vis generated dynamically
by balance between potential energy
and kinetic energy
charmonium: v?=1/3
bottomonium: v? = 1/10

* nonperturbative effects
can be organized according to their scaling with v

Friday, May 21, 2010
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Nonrelativistic QCD (cont.) :

Multipole expansion
e E1 transitions: AL=1, AS=0 amplitude ~ v
e M1 transitions: AL =0, AS=1 amplitude ~ v’

Fock state expansion for quarkonium
can be organized in powers of v

J/) = O(1) |ee(1 “S1)) + O(v) |ce(8°Py) + g) + O(v°)

Lattice NRQCD Lepage et al. 1992
calculate properties of quarkonium nonperturbatively
NRQCD, HPQCD, ...
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NRQCD Factorization

3 apply NRQCD to Bodwin, Braaten and Lepage 1995

annihilation decays/inclusive production of quarkonium

* motivation:
infrared divergences for P-waves in CSM

decays  xg = 4949¢
production b — yg+s+ g

e use effective field theory NRQCD
to separate hard momentum scales (1710 and larger)
from soft momentum scales (110 v and smaller)

e annihilation/ creation of QQ_ pair: hard

e evolution/formation of quarkonium: soft
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NRQCD Factorization (cont.)

Annihilation decay rate of charmonium H

ZI’ cc(n)| (H|O,|H)

e sum over color/ angular momentum channels
l Or § 180/ 381/ 1P1/ 3P0/ 3P1/ 3P2/

e hard factors: annihilation rate for cc into partons
expand in powers of (1)

e soft factors: NRQCD matrix elements
scale as powers of v

* rigorous factorization formula
double expansion in as(11.) and v

Friday, May 21, 2010
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NRQUCD Factorization (cont.)

Annihilation decay rate of charmonium H

ZI’ cc(n)| (H|O,|H)

* velocity scaling of NRQCD matrix elements

T (138~ o
(8 °Py), (8 'So), (8 “S1) ~ v'

Xes: (1 °Pj) (8 951) ~ v°

* solves infrared divergence problem for P-waves

e spin symmetry relates J/y, 7.
XCO/ XCI/ XC2/ hC

Friday, May 21, 2010
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NRQCD Factorization (cont.)

Inclusive production of charmonium H

do[H] =) délcé(n)] (OF)

e sum over color/angular momentum channels
Nor SRS SR R 15 o

e hard factors: parton cross sections for creating cc
expand in powers of (1)

¢ soft factors: NRQCD matrix elements
scale as powers of v

* conjectured factorization formula
motivated by perturbative QCD factorization theorems

Friday, May 21, 2010
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NRQCD Factorization (cont.)
Inclusive production of charmonium H

do[H] =) délcé(n)] (OF)

* velocity scaling of NRQCD matrix elements
J/ (138;) ~ v°
Xes: (L7Py)(8761) ~0°

* solves infrared divergence problem for P-waves

® vacuum saturation approximation
relates CSM matrix elements for production and decay

Friday, May 21, 2010
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Y(2S) Surplus at the Tevatron

CDF collaboration

e prompt y(25) is 30 times larger than CSM prediction

T T T o
B MRSDO structure functions
o — Prompt J /1 production i
% ; ¢¢ ---- Prompt %(2S) production 3
O
™~
O
c TF
*
=
AT
O
~& :
o L
O i
=)
(O
10’3-_ ]
E o Prompt J/v  J /vy Systematic Error 3
- A Prompt 9%(2S) + Y(2S) Systematic Error
10_4 1 I 1 I L I 1 I 1 I \ux‘.l ) ] 1 ] ! ] )
0) 2 4 6 3 10 12 14 16 18 20

PTNW [Ge\//c]
feeddown from P-wave or D-wave charmonium?

charmonium hybrids?
Color evaporation model?
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Y(2S) Surplus at the Tevatron

* NRQCD Factorization predicts
both color-singlet and color-octet production mechanisms

P(28):  (L°S1) ~ o’
(8 *P1), (8 'So), (8 °S1) ~ v’

e at large v,
CSM term (1 3S;) is suppressed by o’
color-octet terms (8 1Sy), (8 3Pj) are suppressed by o v*
color-octet term (8 351) is suppressed only by v*

e proposed solution to (2S) surplus:
prompt 1(2S) at large pr at the Tevatron
is dominated by (8 3S;) term (color-octet mechanism)
Braaten and Fleming 1995
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NRQCD Factorization Model

Inclusive production of charmonium H
do[H] =) dé[ce(n)] (OF)
n

e for S-waves, truncate after order v’
T/ <lSS1>N1)3
(8 °Py), (8 'So), (8 °S1) ~ v

=> 4 universal constants for J/y, 1.

(1 determined by [/ — e'e)

e for P-waves, truncate after order v°

Xes:  (1°Pj), (8 %S1) ~v°

=> 2 universal constants for Yo, ¥c1, X2, he
(1 determined by Y« — y7)

Friday, May 21, 2010
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NRQCD Factorization Model

Inclusive production of charmonium H
do[H] =) dé[ce(n)] (OF)
n

e for S-waves, truncate after order v’
T/ <lSS1>N1)3
(8 °Py),|(8 "So), (8 °S1) ~ v

=> 4 universal constants for J/y, 1.

(1 determined by J/y — ¢'e’)

e for P-waves, truncate after order v°

Xes: (1 °P;), (8 3S1) ~ v°

=> 2 universal constants for Yo, ¥c1, X2, he
(1 determined by %o — yy)
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NRQCD Factorization Model

CDF data on prompt (25

| .y _FTl

| | IIIIIIl,' | I.I'IIIIIl

BR(W(2S)—>w' W) do(pp—p(2S)+X)/dp,. (nb/GeV)

Vs =1.8 TeV; |n| < 0.6

total
----- colour-octet 1S0 + 3PJ
3
S colour-octet S,
LO colour-singlet
HRETRE - L [ O colour-singlet frag.

5

10 15 20

(GeV)

fit (8 351) and (8 1So) (or (8 3P}))

Kramer 2001

NRQCD factorization can accomodate the Tevatron data

natural explanation with sound theoretical basis

Friday, May 21, 2010
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NRQCD Factorization Model

CDF data
direct J /) prompt ¥
10 a I I I I I I I I I I T T 3 10 = | I I I I I I I I I I I T T E
- BRUJAp—u'w) do(pp—J/p+X)/dp, (nb/GeV) ) BRUJ/p—u'w) do(pp—x,,—>J/p+X)/dp, (nb/GeV) 7
E Vs =1.8 TeV; n| < 0.6 ] ] Vs =1.8 TeV; n| <0.6 ]
Fis \\ total = 1 =
- L H IR E) e et ity colour-octet 180 + 3PJ ] £ total S
:. —-—-—- colour-octet 381 ] DR AN S ol ey L colour-octet 331 8
2 LO colour-singlet ] [ LO colour-singlet 1
-1 SO & St Gl 0 g colour-singlet frag. [ N
WER = 310 F E
Bt ©SM A i B GS N :
10 F wr q10 | E
10 & I l l : 2! l : : = | l l\\\l\ : 10- I ' I l I | | | | I | I | I { 1 ;
5 10 15 20 5 10 15 20
- G . py (GeV)
fit <§ 351) and <§ 150) fit <§ 351>
Kramer 2001
NRQCD factorization can accomodate the Tevatron data
natural explanation with sound theoretical basis
Friday, May 21, 2010 25



NRQCD Factorization:

theory of quarkonium production?

o proof of NRQCD factorization formula?

do[H] =) délce(n)] (OF)

e NRQOQCD matrix elements
are they universal?
can they be calculated using lattice OCD?
is truncation of NRQCD factorization model adequate

® parton cross sections
can higher orders in os be calculated?
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Proot of NRQCD Factorization!

e NRQCD tactorization formulas are conjectured
motivated by perturbative QCD factorization theorems
must be proven to all orders in o

* exclusive production —
e”e- — quarkonium + quarkonium
B — (light meson) + quarkonium

proof of factorization to all orders in o
Bodwin, Lee, Tormo 2008, 2010

e inclusive production in hadron collisions
hadron + hadron — quarkonium + X
verification of factorization to N“LO in a;
eikonal line required in color-octet matrix elements

Nayak, Qiu, Sterman 2005, 2006
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Proof of NRQCD Factorization? (cont.) Bodwin @ KITPC

e Nayak, Qiu, Sterman (2005, 2006): A key difficulty in proving factorization to all orders is the
treatment of gluons with momenta of order m.. in the quarkonium rest frame.

e If the orange gluon has momentum of order
P>_ m., it can’t be absorbed into the NRQCD ma-
trix element as a quarkonium constituent.

(7
N

/ e But the orange gluon can have non-vanishing
soft exchanges with the quarkonium con-
stituents.

LR LR T L T L L L L) .Tlhe orange gluon can be treated as the

/ , \ eikonal-line part of the NRQCD matrix ele-

< > ment, provided that the answer does not de-

P P)‘ pend on the direction of the eikonal line (uni-
versality of the matrix elements).

_C

e Nayak, Qiu, Sterman (2005, 2006): At two-loop order, the eikonal lines contribute but a “miracle”
occurs: The dependence on the direction of the eikonal line cancels.

e In general, factorization of the inclusive cross section beyond two-loop order is still an open
qguestion.

e An all-orders proof is essential because the o, associated with soft gluons is not small.
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Proof of NRQCD Factorization? (cont.)

dramatic new development at this workshop!

proof of factorization to all orders in as at large pr!
Jian-Wei Qiu and collaborators

e separate very hard scale pr from not-so-hard scale mg
by expanding in powers of 1m?/ pr’

e at leading power: factorization (parton fragmentation)
at order mqg?/pr?: factorization (QQ fragmentation)
at higher orders: no factorization?

e not-so-hard factor involves scale mg
and softer scales mov and smaller
use NRQCD factorization to express it
in terms of NROCD matrix elements?

Friday, May 21, 2010
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NRQCD matrix elements
do[H] = dé[cé(n) w

e are they universal?
in absence of proof, use phenomenology

e can they be calculated using lattice OCD?
CSM matrix elements: YES, up to O(v#)
color-octet matrix elements: NO

e truncation of NRQCD factorization model
S-waves: (1351), (8351), (8 1S0), (8 3P))
P-waves: (13P)), (83S:1)
is this sufficiently accurate for charmonium? maybe
for bottomonium? maybe

Friday, May 21, 2010
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Parton cross sections

accurate predictions require at least NLO in o
for charmonium, os(m.) = 0.25

for bottomonium, os(mp) = 0.18

Kramer, Zunft, Steegborn, Zerwas 1995; Kramer 1996

® phOtOprOdUCtiOn Artoisenet, Campbell, Maltoni, Tramontano 2009
Chang, Li, Wang 2009; Li, Chao 2009

Butenschoen, Kniehl 2009
[ YY collisions Klasen, Kniehl, Mihaila, Steinhauser 2005

Zhang, Gao, Chao 2005; Zhang, Ma, Chao 2008
e ¢t ¢ — double charmonium Gong Wang 2008
Zhang, Chao 2006; Ma, Zhang, Chao 2008
Gong, Wang 2008, 2009

o ot — Charmonium + X Zhang, Ma, Wang, Chao 2009
Petrelli, Cacciari, Greco, Maltoni, Mangano 1988

RO Campbell, Maltoni, Tramontano 2008; Artoisenet, Lansberg, Maltoni, 2008
¢ hadr on collisions i Wang 2008; Gong, Wang 2008; Gong, Li, Wang 2009

Friday, May 21, 2010
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Phenomenological Status

of NROQCD Factorization

e photoproduction

e ¢t ¢ — double charmonium
e ¢t ¢ — charmonium + X

o vv collisions

¢ hadron collisions




Photoproduction
Inelastic J/¢ Photoproduction Cross Section at HERA

e |t had been believed that NLO color-singlet calculations leave little room for a color-octet contri-

Bodwin @ KITPC

bution.
NA I T ‘ T T
> 10 ‘Q ® ZEUS (38 pb™) -
g e O H1 (80 pb™) (scaled)
c
N %ﬁ | KZSZ (NLO, CS) e NLO corrections increase the color-
2 g L8 WSEL At B singlet contribution substantially.
T f% 1.3 <m; < 1.6 GeV (Kramer, Zunft, Steegborn, Zerwas
- KZSZ (LO, CS) (1994): Kramer (1995))
¢ ﬁ e NLO corrections include v + g —
0 E 2 (c€) + gg, which is dominated by
: % t-channel gluon exchange.
4 e For large pr, this process goes as
e i a’m?/pS., instead of a’m? /p5..
10 ¢ =
L ‘ ‘ ! | | %
0 20 40
pZ (GeV?)

Friday, May 21, 2010
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Photoproduction (cont.) Bodwin @ KITPC

Recent Theoretical Developments

e Artoisenet, Campbell, Maltoni, Tramontano (2009): A new calculation of NLO color-singlet con-

tribution

— Confirms the analytic results of previous calculations.

— But a more reasonable choice of renormalization/factorization scale
(\/4mg + p7. instead of m./+/2) yields much smaller numerical results for cross sections.

100 ¢

04<7<0.9 " ZEUSdata ~— | e | | " ZEUS data e
CS NLO mwwm ] - P>1 GeV CS NLO mwmm

0 A e I e =0y -t UL TR e F o B il B R i Ll - o
F = 100 | CSLO _:

0.1 ¢

do /dz (nb)

0.01 ¢

do /dP+ (nb/GeV?)

0.001 !

e Leaves room for a color-octet contribution.

e There is no longer an obvious conflict between the NRQCD prediction and the HERA data.

Friday, May 21, 2010 34



Double charmonium from ete Bodwin @ KITPC

Exclusive Double-Charmonium Production at Belle and BABAR

2l — Jifan Ak

Belle (2004): oleTe™ — J/v9 + 1] X B>y = 25.6 + 2.8 & 3.4 fb.

BABAR (2005): ofete™ — J/9 + 7 X Bso = 17.6 £2.8713t. ) by =

e NRQCD at LO in o, and v

Braaten, Lee (2003): o[eTe™ — J/v + n.] = 3.78 4+ 1.26 fb.

Liu, He, Chao (2003): oleTe™ — J/4 + n.] = 5.5 fb.

The two calculations employ different choices of m., NRQCD matrix elements, and a.
Braaten and Lee include QED effects.

Confirmed by Brodsky, Ji, and Lee in light-front QCD in the quarkonium nonrelativistic limit.

e Exclusive process: the color-octet contribution is suppressed as v*.

e The LO color-singlet matrix elements are determined from ., — v~ and J/¢ — e*e™.
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Double charmonium from ete Bodwin @ KITPC

o, Corrections to ete™ — J/vy + .

e An important step in resolving the discrepancy:
Zhang, Gao, Chao (2005) found that corrections at NLO in «; yield a K factor of about 1.96.

e Confirmed by Gong and Wang (2007).

e Not enough to bring theory into agreement with experiment.

relativistic corrections: x1.5?

e Theory and experiment agree within uncertainties:

— Theory: olete”™ — J/v +n.] = 17.6751 fb

— Belle: olete” — J/¢ 4+ n.] X Bsy = 25.6 2.8+ 3.41b.
- BABAR: olete”™ — J/v + n.] X Bs2 = 17.6 & 2.87.° fb.

e Caveat: B~ is not known.

— Could be as small as 0.5-0.6.

— Even so, the error bars of theory and the BABAR experiment overlap.

e Zhang, Ma, Chao (2008): In the cases of olete™ — J/¥(¥(2S5)) + xeo], large K factors
(~ 2.8) may bring theory into agreement with experiment.

Friday, May 21, 2010 36



Inclusive J/y + charm from ete  Bodwin @ KITPC

Inclusive Double ce¢ Production at Belle

e Belle (2002):

e pQCD plus color-singlet model (Cho, Leibovich (1996); Baek, Ko, Lee, Song (1997); Yuan, Qiao,
Chao (1997)):

e There is a significant disagreement between experiment and the LO color-singlet model.

Friday, May 21, 2010 37



Inclusive J/y + charm from e*e- (cont.) Bodwin @KITPC

NLO corrections: Zhang , Chao 2007; Gong, Wang 2009

Ma, Zhang, and Chao 2008; Gong, Wang 2009

Effect of NLO calculations on the ratio

e NLO calculations significantly reduce the discrepancy between theory and experiment for the
ratio of cro lons:

— Only color-singlet contributions are included.

e No longer an apparent disagreement between experiment and color-singlet theory.

e It would be good to have a detailed error analysis for the theoretical prediction.

e It is important for BABAR to check the Belle results for inclusive double-c¢ production.

olete™ — J/¢ + cc + X]

Belle:

o 3 B O
olete — J/¢Y + X| D
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Inclusive [/y from yy Bodwin @ KITPC

vy — J/¢+ X at LEP

NRQCD e'e” —e'e JAp X at LEP2
Sl L L L L L A B,
p B 7 DELPHI prelim. 1§ comparison of theory (Klasen, Kniehl, Mi-
B MRSTO98 fit haila, Steinhauser) with Delphi data clearly
S(i N CTEQS fit || favors NRQCD over the color-singlet model.
¥4 VS =197 GeV e Theory uses Braaten-Kniehl-Lee matrix ele-
> NRQCD =2 <Yy, <2 ments from Tevatron data and MRST98LO
% (solid) and CTEQS5L (dashed) PDF’s.
a] b . T
{é : e Theoretical uncertainties from
o) .
:t% - — Renormalization and factorization scales
5 (varied by a factor 2),
10 — NRQCD color-octet matrix elements,
B — Different linear combination of matrix ele-
S ments than in Tevatron cross sections.
o
10
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DeeE Inelastic Scattering Bodwin @ KITPC

J /v Production in DIS at HERA

e Note that NLO calculations are not yet available for this process.

e The NRQCD (Kniehl, Zwirner (2001)) prediction uses Braaten-Kniehl-Lee (1999) matrix ele-
ments extracted from the Tevatron data and MRST98LO and CTEQ5L PDF's.

e Theoretical uncertainties from

— PDF’s,
— Renormalization and factorization scales (varied by a factor 2),
— NRQCD color-octet matrix elements,

— Different linear combination of matrix elements than in Tevatron cross sections.

Friday, May 21, 2010 40



Inclusive guarkonium at Tevatron Bodwin @ KITPC

New Results for J/+ Production

e Color-singlet contribution:

100 . . . . . . . , . :
Jhp |:1)/r20duct|on at Tevatron NS wmm | @ Plot from Pierre Artoisenet, based
s''°=1.96 TeV cordata — 1 on work by Artoisenet, Campbell,
Lansberg, Maltoni, Tramontano (in

progress)

10

branching ratio: 5.88 %
2.5 2\1/2
no=(4m 2+P-?)

0.1k
: LDME: 1.16 GeV°

e The NNLO* calculation is an esti-

0.01 L lyl<0.6 g :
; mate based on real-emission contri-
0.001 | butions only.
0.0001 |

e The data still seem to require a color-
octet contribution, but its size may be
reduced from previous estimates.
R e el o = S Affects the matrix elements used to
15 20 25 30  compute all other processes.
P (GeV) P :

F uncertainties:

F ug/2 < us <2 u
1e-05 ¢ 0 5 ! _ k _
- for o~ contributions:

2 min 2
- m.o<s;p <4 mg

do /dPli<0.6 X Br (nb/GeV)

5 10

e Color-octet contribution:
NLO corrections are about 14% (Gong, Li, and Wang (2008)).
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Inclusive guarkonium at Tevatron  Bodwin @ KITPC

New Results for Color-Singlet T Production

Y(1S) production at the Tevatron Mol ]
s'2=1.8 TeV NNLO — :

0.1 F
_ prompt Y(1S) x Férect ——

oo branching ratio: 2.48 % '

3 2 5 2,172 E
C M0=(4mb +PT ) 3 ]

LDME: 9.28 GeV

lyl<0.4 e Plot from Pierre Artoisenet, based on

work by Artoisenet, Campbell, Lans-
berg, Maltoni, Tramontano (2008)

0.001

0.0001 3
- uncertainties:

e NLO results confirmed by Gong and
Wang (2007).

- Uol2 < ug <2 ug

[t E for ocss contributions:

mb2/2 <s§;<2 mb2

do /dPyly04 -Br (nb/GeV)

5 10 15 20 | \25 | 30
Pr (GeV)

e The data could be explained by color-singlet production alone.
e There is still room for a substantial amount of color-octet production.

e Color-octet production is suppressed as v*.
Should be smaller for T (v? ~ 0.1) than for J/v (v? ~ 0.3).
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Inclusive charmonium at RHIC Bodwin @ KITPC

J /1 Production at RHIC

e The STAR Collaboration has measured the J/+ pr distributions in p + p and Cu+Cu collisions:

30l (a)200 GeV p+p P*P| () v pip(2005)  [CUTCU
0O 5<pr<14 GeV/c ® p+p (2006 3
> 251 % A ‘3510'1 L O gua(()u 0-2)0% E L
= 20} —w unlike-sign % EE;] * Cu+Cu 0-60% 1 Q
S = like-sign | O [ Direct JAp (p+p): 7 N
=10 - = simulation | S 402 ¥ —Locs+«co  g10° 3
£ o NNLO*CS 1 =
8 S ; =—- = [ % 1 QI_\)
% S| IR N __-. il 51 0-3 3 = 10_9 Z
5] S o
& 19+ (b) 200 GeV Cu+Cu = < o
O 5<pr<8GeV/c N T Q
> . 10 <
% ke J_L 107 =105
B i : L%
3 5 g
o S | <
P: = 10°F = HogRe)
= L] | m . 1 oo
) - i
= L :
O — | ) | f | f 1 10-6 .‘ 1 ITI 1 Iil 1 Ii 1 III P I|I R NI I 10-12
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e The LO color-singlet plus color-octet calculation (Nayak, Liu, Cooper (2003)) fits the data well.

pT (GeV/c)

— Does not include feeddown from ¥ (2S), x., or B decays. (Estimated to be a factor 1.5.)
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Polarmzation
NRQCD tfactorization

predicts the polarization of quarkonium
with no additional parameters

dramatic qualitative prediction for hadron collisions:
direct [/y, Y transversely polarised at large pr
Cho, Wise 1995
e at sufficiently large pr, charmonium production
is dominated by gluon fragmentation
g Sr g oty
e at LO in a,, gluon fragments into color-octet cc pair
that inherits transverse polarization of gluon
o = R E |
e at LO in v, hadronization into 3S; charmonium
preserves transverse polarization of cc pair

cc@3S) — Jiwt + X
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Polarization

(cont.)

—0.4F = prompt J /v

06 @ CDF .
=08 — direct =
o | I e
0 5 10 15 20 o:(GeV)
Run Il:
1 _I T T T T

08 (a) -

0.6 =

04 e CDF Data —

0.2 NRQCD =

- — k-factorization -
TS O rege--ooommmmmmee T —
020 — &

0.2 - .
040 =
-0.6 — -
08 =

B | =
5 10 15 20 25 30
pr (GeV/e)

Bodwin @ KITPC

J /1 Polarization

e do/d(cos ) < 1+ o cos” 6.

— o = 1 is completely transverse;

— a = —1 is completely longitudinal.

e NRQCD prediction from Braaten, Kniehl, Lee
(1999).

— Feeddown from x. states is about 30% of
the J /4 sample and dilutes the polarization.

— Feeddown from v (2.S) is about 10% of the
J /1) sample and is largely transversely po-
larized.

e Run | results are marginally compatible with the
NRQCD prediction.

e Run Il results are inconsistent with the NRQCD
prediction.

e Also, inconsistent with Run | results.
CDF was unable to track down the source of the
Run I-Run |l discrepancy.
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Polarization (cont.) Bodwin @ KITPC

1 (2S) Polarization

Run: |
030 e
0.8 F
0.6
0.4 F
0.2 F
0 F
—02 F ® CDF
04 - M Braaten—Kniehl—Lee
—0.6 - . _. Leibovich B
-0.8 |- [ ] Beneke—Krdmer = : - :
R T e e e e The Run |l data are incompatible with the
o 5 10 15 20 25 5 (Gev) NRQCD prediction.
Run: |l
1 ——— .
0.8 =
0.6 e CDF Data E
0.4¢ == NRQCD E
0.2F —— k-factorization 3
S O + ------------------------------------------------------- -
-0.20 =
0.4 + =
-0.61 =
08 T E
TE T G R R (i Rt 30
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Polarization (cont.)

Y (1S) Polarization:

S

0.8
0.6

04 -
0.2

0

-0.2 |
-0.4 ¢
-0.6 ©

-0.8

Bodwin @ KITPC

Y Polarization

DO, 1.3 o™

Y (2S) Polarization:

= 17

0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6

0.8

T T T T S T T ) T
75 10 125 15 175 20

p; of Y(1S) [GeV/c]

L1+

DO, 1.3 b

l 4

TL

0

21585

T O T O
75 10 125 15 17.5 20

o, of Y(2S) [GeV/c]

e Inthe T (15) case, the DO results (black) are
incompatible with the CDF results (green).

e The CDF results are compatible with the
NRQCD prediction

e The DO results are marginally incompatible
with the NRQCD prediction.

e The curves are the limiting cases of the k-
factorization prediction.

e In the T(2S5) case, the theoretical and ex-
perimental error bars are too large to make a
stringent test.
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Polarization (cont.)

Are still higher order perturbative QCD calculations
necessary for polarization?
Does NRQCD factorization fail for polarization?

new development at this workshop!

large-pr factorization Jian-Wei Qiu et al.

e expand in powers of n1o?/ pr’
to separate scales mpand pr

* at leading power: parton fragmentation = T
at order mg?/pr?: QQ fragmentation = L

o Will predictions including QQ fragmentation
agree with data?
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Stumbling towards a Theory of

Quarkonium Production

Color-singlet model (1976-1995) ’
Color evaporation model (1977-?) § |

NRQCD tfactorization
e still a viable theory of quarkonium production!
o exclusive quarkonium: proven to all orders
* inclusive quarkonium: verified to NNLO
e can it be combined with large-pr factorization?

NRQCD tactorization model
S-wave multiplets: 3 color-octet parameters
P-wave multiplets: 1 color-octet parameter
e still a viable model of charmonium production
bottomonium production
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Stumbling towards a Theory of Quarkonium Production

NLO perturbative QCD corrections

e have removed most dramatic discrepancies
between NRQCD factorization and experiment
(polarization is important exception)

e decrease the importance of color-octet contributions

Large-pr factorization Jian-Wei Qiu et al.

* separates scales mpand pr
o introduces QQ fragmentation
o still requires NRQCD factorization
to reduce production rates to a few constants
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Stumbling towards a Theory of Quarkonium Production

Experimental outlook

e final results from B factories (Belle, Babar)
DESY (H1, Zeus)
Tevatron (CDEF, D0)

o first results from LHC experiments
extend charmonium out to fragmentation region
high statistics measurements of bottomonium
additional results from RHIC

e future results from super-B factories

Will NRQCD factorization
remain a viable theory of quarkonium production?
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